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Abstract

Mash extends the MinHash dimensionality-reduction technique to include a pairwise mutation distance and P value
significance test, enabling the efficient clustering and search of massive sequence collections. Mash reduces large
sequences and sequence sets to small, representative sketches, from which global mutation distances can be rapidly
estimated. We demonstrate several use cases, including the clustering of all 54,118 NCBI RefSeq genomes in 33 CPU h;
real-time database search using assembled or unassembled Illumina, Pacific Biosciences, and Oxford Nanopore data;
and the scalable clustering of hundreds of metagenomic samples by composition. Mash is freely released under a BSD
license (https://github.com/marbl/mash).
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Background
When BLAST was first published in 1990 [1], there were
less than 50 million bases of nucleotide sequence in the
public archives [2]; now a single sequencing instrument
can produce over 1 trillion bases per run [3]. New
methods are needed that can manage and help organize
this scale of data. To address this, we consider the
general problem of computing an approximate distance
between two sequences and describe Mash, a general-
purpose toolkit that utilizes the MinHash technique [4]
to reduce large sequences (or sequence sets) to com-
pressed sketch representations. Using only the sketches,
which can be thousands of times smaller, the similarity
of the original sequences can be rapidly estimated with
bounded error. Importantly, the error of this computa-
tion depends only on the size of the sketch and is inde-
pendent of the genome size. Thus, sketches comprising
just a few hundred values can be used to approximate
the similarity of arbitrarily large datasets. This has
important applications for large-scale genomic data
management and emerging long-read, single-molecule
sequencing technologies. Potential applications include

any problem where an approximate, global distance is
acceptable, e.g. to triage and cluster sequence data,
assign species labels, build large guide trees, identify
mis-tracked samples, and search genomic databases.
The MinHash technique is a form of locality-sensitive

hashing [5] that has been widely used for the detection
of near-duplicate Web pages and images [6, 7], but has
seen limited use in genomics despite initial applications
over ten years ago [8]. More recently, MinHash has been
applied to the relevant problems of genome assembly
[9], 16S rDNA gene clustering [10, 11], and metagenomic
sequence clustering [12]. Because of the extremely low
memory and CPU requirements of this probabilistic
approach, MinHash is well suited for data-intensive prob-
lems in genomics. To facilitate this, we have developed
Mash for the flexible construction, manipulation, and
comparison of MinHash sketches from genomic data. We
build upon past applications of MinHash by deriving a
new significance test to differentiate chance matches when
searching a database, and derive a new distance metric,
the Mash distance, which estimates the mutation rate
between two sequences directly from their MinHash
sketches. Similar “alignment-free” methods have a long
history in bioinformatics [13, 14]. However, prior methods
based on word counts have relied on short words of only
a few nucleotides, which lack the power to differentiate
between closely related sequences and produce distance
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measures that can be difficult to interpret [15–18]. Alter-
natively, methods based on string matching can produce
very accurate estimates of mutation distance, but must
process the entire sequence with each comparison, which
is not feasible for all-pairs comparisons [19–22]. In con-
trast, the Mash distance can be quickly computed from
the size-reduced sketches alone, yet produces a result that
strongly correlates with alignment-based measures such
as the Average Nucleotide Identity (ANI) [23]. Thus,
Mash combines the high specificity of matching-based ap-
proaches with the dimensionality reduction of statistical
approaches, enabling accurate all-pairs comparisons be-
tween many large genomes and metagenomes.
Mash provides two basic functions for sequence com-

parisons: sketch and dist. The sketch function converts a
sequence or collection of sequences into a MinHash
sketch (Fig. 1). The dist function compares two sketches
and returns an estimate of the Jaccard index (i.e. the
fraction of shared k-mers), a P value, and the Mash dis-
tance, which estimates the rate of sequence mutation
under a simple evolutionary model [22] (see “Methods”).
Since Mash relies only on comparing length k sub-
strings, or k-mers, the inputs can be whole genomes,
metagenomes, nucleotide sequences, amino acid se-
quences, or raw sequencing reads. Each input is simply
treated as a collection of k-mers taken from some
known alphabet, allowing many applications. Here we
examine three specific use cases: (1) sketching and
clustering the entire NCBI RefSeq genome database;
(2) searching assembled and unassembled genomes
against the sketched RefSeq database in real time; and
(3) computing a distance between metagenomic samples
using both assembled and unassembled read sets.
Additional applications can be envisioned and are covered
in the “Discussion”.

Results and discussion
Clustering all genomes in NCBI RefSeq
Mash enables scalable whole-genome clustering, which is
an important application for the future of genomic data
management, but currently infeasible with alignment-
based approaches. As genome databases increase in size
and whole-genome sequencing becomes routine, it will
become impractical to manually assign taxonomic labels
for all genomes. Thus, generalized and automated
methods will be useful for constructing groups of related
genomes, e.g. for the automated detection of outbreak
clusters [24]. To illustrate the utility of Mash, we sketched
and clustered all of NCBI RefSeq Release 70 [25], totaling
54,118 organisms and 618 Gbp of genomic sequence. The
resulting sketches total only 93 MB (Additional file 1:
Supplementary Note 1), yielding a compression factor of
more than 7000-fold versus the uncompressed FASTA
(674 GB). Further compression of the sketches is possible

using standard compression tools. Sketching all genomes
and computing all ~1.5 billion pairwise distances required
just 26.1 and 6.9 CPU h, respectively. This process is easily
parallelized, which can reduce the wall clock time to
minutes with sufficient compute resources. Once con-
structed, additional genomes can be added incrementally
to the full RefSeq database in just 0.9 CPU s per 5 MB

Fig. 1 Overview of the MinHash bottom sketch strategy for estimating
the Jaccard index. First, the sequences of two datasets are decomposed
into their constituent k-mers (top, blue and red) and each k-mer is
passed through a hash function h to obtain a 32- or 64-bit hash,
depending on the input k-mer size. The resulting hash sets, A and B,
contain |A| and |B| distinct hashes each (small circles). The Jaccard index
is simply the fraction of shared hashes (purple) out of all distinct hashes
in A and B. This can be approximated by considering a much smaller
random sample from the union of A and B. MinHash sketches S(A) and
S(B) of size s = 5 are shown for A and B, comprising the five smallest
hash values for each (filled circles). Merging S(A) and S(B) to recover the
five smallest hash values overall for A∪B (crossed circles) yields S(A∪B).
Because S(A∪B) is a random sample of A∪B, the fraction of elements in
S(A∪B) that are shared by both S(A) and S(B) is an unbiased estimate
of J(A,B)
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genome (or 4 CPU min for a 3 GB genome). Thus, we
have demonstrated that it is possible to perform unsuper-
vised clustering of all known genomes and to efficiently
update this clustering as new genomes are added.
Importantly, the resulting Mash distances correlate well

with ANI (a common measure of genome similarity), with
D ≈ 1 −ANI over multiple sketch and k-mer sizes (Fig. 2).
Due to the high cost of computing ANI via whole-genome
alignment, a subset of 500 Escherichia genomes was se-
lected for comparison (Additional file 1: Supplementary
Note 1). For ANI in the range of 90–100 %, the correl-
ation with Mash distance is very strong across mul-
tiple sketch sizes and choices of k. For the default
sketch size of s = 1000 and k = 21, Mash approximates
1–ANI with a root-mean-square error of 0.00274 on this
dataset. This correlation begins to degrade for more diver-
gent genomes because the variance of the Mash estimate
grows with distance. Increasing sketch size improves the
accuracy of Mash estimates, especially for divergent ge-
nomes (Table 1, Additional file 1: Figures S1 and S2). This

results in a negligible increase in runtime for sketching, but
the size of the resulting sketches and time required for dis-
tance comparisons increases linearly (Table 2). The choice
of k is a tradeoff between sensitivity and specificity. Smaller
values of k are more sensitive for divergent genomes, but
lose specificity for large genomes due to chance k-mer colli-
sions (Additional file 1: Figure S3). Such chance collisions
will skew the Mash distance, but given a known genome
size, undesirable k-mer collisions can be avoided by
choosing a suitably large value of k (see “Methods”). How-
ever, too large of a k-mer will reduce sensitivity and so
choosing the smallest k that avoids chance collisions is
recommended.
Approximate species clusters can be generated from

the all-pairs distance matrix by graph clustering methods
or simple thresholding of the Mash distance to create
connected components. To illustrate, we linked all
RefSeq genomes with a pairwise Mash distance ≤0.05,
which equates to an ANI of ≥95 %. This threshold
roughly corresponds to a 70 % DNA-DNA reassociation
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Fig. 2 Scatterplots illustrating the relationship between ANI and Mash distance for a collection of Escherichia genomes. Each plot column shows a
different sketch size s and each plot row a different k-mer size k. Gray lines show the model relationship D = 1–ANI and numbers in the bottom
right of each plot give the root-mean-square error versus this perfect model. Blue lines show linear regression models. Increasing the sketch size
improves the accuracy of the Mash distance, especially for more divergent sequences. However, there is a limit on how well the Mash distance
can approximate ANI, especially for more divergent genomes (e.g. ANI considers only the core genome)
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value—a historical, albeit debatable, definition of bacter-
ial species [23]. Figure 3 shows the resulting graph of
significant (P ≤10–10) pairwise distances with D ≤0.05 for
all microbial genomes. Simply considering the connected
components of the resulting graph yields a partitioning
that largely agrees with the current NCBI bacterial spe-
cies taxonomy. Eukaryotic and plasmid components are
shown in Additional file 1: Figures S4 and S5, but would
require alternate parameters for species-specific cluster-
ing due to their varying characteristics.
Beyond simple clustering, the Mash distance is an ap-

proximation of the mutation rate that can also be used
to rapidly approximate phylogenies using hierarchical
clustering. For example, all pairwise Mash distances for
17 RefSeq primate genomes were computed in just 2.5
CPU h (11 min wall clock on 17 cores) with default
parameters (s = 1000 and k = 21) and used to build a
neighbor-joining tree [26]. Figure 4 compares this tree
to an alignment-based phylogenetic tree model down-
loaded from the UCSC genome browser [27]. The Mash
and UCSC primate trees are topologically consistent for
everything except the Homo/Pan split, for which the
Mash topology is more similar to past phylogenetic
studies [28] and mitochondrial trees [14]. On average,
the Mash branch lengths are slightly longer, with a
Branch Score Distance [29] of 0.10 between the two

trees, but additional distance corrections are possible for
k-mer based models [22]. However, due to limitations of
both the k-mer approach and simple distance model, we
emphasize that Mash is not explicitly designed for phyl-
ogeny reconstruction, especially for genomes with high
divergence or large size differences. For example, clus-
tering the treeshrew, mouse, rat, guinea pig, and rabbit
genomes alongside the primate genomes causes the tar-
sier to become misplaced (Additional file 1: Figure S6).
Increasing the sketch size from 1000 to 5000 corrects
this placement, but Mash has limited accuracy at these
distances and should only be used in cases where such
approximations are sufficient.

Real-time genome identification from assemblies or reads
With a pre-computed sketch database, Mash is able to
rapidly identify isolated genomes from both assemblies
and raw sequencing reads. To illustrate, we computed
Mash distances for multiple Escherichia coli datasets
compared against the RefSeq sketch database (Table 3).
This test included the K12 MG1655 reference genome
as well as assembled and unassembled sequencing runs
from the ABI 3730, Roche 454, Ion PGM, Illumina
MiSeq, PacBio RSII, and Oxford Nanopore MinION
instruments. For assembled genomes, the correct strain
was identified as the best hit in a few seconds. For each

Table 1 Example Mash error bounds for a k-mer size of 21 and increasing sketch sizes

Mash distance

Sketch size 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

100 0.0271 0.0868 – – – – – –

500 0.0098 0.0245 0.0473 – – – – –

1000 0.0068 0.0158 0.0323 0.0630 – – – –

5000 0.0029 0.0065 0.0124 0.0235 0.0460 – – –

10,000 0.0020 0.0046 0.0086 0.0159 0.0300 0.0726 – –

50,000 0.0009 0.0020 0.0037 0.0065 0.0116 0.0219 0.0396 0.0822

100,000 0.0006 0.0014 0.0026 0.0046 0.0081 0.0143 0.0250 0.0492

500,000 0.0003 0.0006 0.0011 0.0020 0.0035 0.0060 0.0105 0.0187

1,000,000 0.0002 0.0004 0.0008 0.0014 0.0024 0.0042 0.0072 0.0128

For a given sketch size and Mash distance, the Mash estimation error will be less than the given value with 0.99 probability, as calculated by the binomial inverse
cumulative distribution function. Missing values indicate that the estimate is unbounded, i.e. there is a chance that no matching k-mers will be found and the
Mash distance will be undefined. Plots of the upper and lower error bounds for k = 16 and k = 21 are given in Additional file 1: Figure S2

Table 2 Mash runtime and output size for all-pairs RefSeq computation using various sketch and k-mer sizes

k = 16 k = 21

Sketch size Sketch (CPU h) Dist (CPU h) Size (Mb) gzip (Mb) Sketch (CPU h) Dist (CPU h) Size (Mb) gzip (Mb)

500 26.4 8.4 120.1 89.7 31.3 9.0 229.8 201.8

1000 27.7 15.9 224.9 179.7 31.3 17.4 439.2 399.6

5000 26.4 74.5 1022.5 873.8 31.6 83.6 2034.5 1924.6

10,000 26.8 146.9 1961.8 1691.1 31.7 164.0 3913.0 3696.2

Sketch: CPU h required for the Mash sketch operation for all 54,118 RefSeq genomes. Dist: CPU h required for the Mash dist table operation for all pairs of
sketches. Size: combined size of the resulting sketches in megabytes. gzip: combined size of the resulting sketches after gzip compression
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unassembled genome, a single sketch was constructed
from the collection of k-mers in the reads and compared
to the sketch database. In these cases, the best hit was to
the correct species, including for E. coli 1D MinION
reads [30], which had an average sequencing error rate
of ~40 %. However, the best-hit strain was often incor-
rect due to noise in the raw reads. To account for this
uncertainly, we applied lowest common ancestor (LCA)
classification (see “Methods”), which was correct in all
cases, albeit with reduced resolution. To further mitigate
the problem of erroneous k-mers, Mash can filter low-
abundance k-mers from raw sequencing data to improve
accuracy. Increasing the sketch size can also improve
sensitivity, as would error correction using dedicated
methods [31]. However, there are tradeoffs to consider

when filtering or correcting low-coverage datasets (e.g.
less than 5X coverage [22]).
To test Mash’s discriminatory power, we searched

Oxford Nanopore MinION reads collected from Bacillus
anthracis and Bacillus cereus against the full RefSeq
sketch database. In both cases Mash was able to
correctly differentiate these closely related species
(ANI ≈ 95 %) using 43,806 and 91,379 sequences col-
lected from single MinION R7.3 runs of B. anthracis
Ames and B. cereus ATCC 10987, respectively (com-
bined 1D and 2D reads). In the case of the higher quality
B. cereus reads, processed with a more recent ONT
workflow (1.10.1 vs. 1.6.3), the correct strain was identi-
fied as the best hit. These two searches both required
just 1 min of CPU and 209 MB of RAM. Such low-

Fig. 3 Comparison and de novo clustering of all RefSeq genomes using Mash. Each graph node represents a genome. Two genomes are connected by
an edge if their Mash distance D ≤0.05 and P value ≤10–10. Graph layout was performed using Cytoscape [61] organic layout algorithm [62]. Individual
nodes are colored by species and the top two rows of clusters have been annotated with the majority species label they contain. Only components
containing microbial genomes are shown here (including viruses). Additional file 1: Figures S4 and S5 show eukaryotes, orphan plasmids, and organelles
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overhead searches could be used for quickly triaging un-
known samples or to rapidly select a reference genome
for performing further, more detailed comparative ana-
lyses. For example, Mash uses an online algorithm for
sketch construction and can therefore compare a se-
quencing run against a sketch database in real time.
When tested on the Ebola virus MinION dataset, the
Zaire ebolavirus reference genome was matched with a
Mash P value of 10–10 after processing the first 227,445
bases of sequencing data, which were collected by the
MinION after just 770 s of sequencing. However, analyz-
ing such streaming data presents a multiple testing
problem and determining appropriate stopping condi-
tions is left for future work (e.g. by monitoring the sta-
bility of a sketch as additional data are processed).

Clustering massive metagenomic datasets
Mash can also replicate the function of k-mer based
metagenomic comparison tools, but in a fraction of the
time previously required. The metagenomic comparison
tool DSM, for example, computes an exact Jaccard index
using all k-mers that occur more than twice per sample
[32]. By definition, Mash rapidly approximates this result
by filtering unique k-mers and estimating the Jaccard
index via MinHash. COMMET also uses k-mers to
approximate similarity, but attempts to identify a set of
similar reads between two samples using Bloom filters
[33, 34]. The similarity of two samples is then defined as
the fraction of similar reads that the two datasets share,
which is essentially a read-level Jaccard index. Thus,
both DSM and COMMET report Jaccard-like similarity

measures, which drop rapidly with increasing diver-
gence, whereas the Mash distance is linear in terms of
the mutation rate, but becomes less accurate with in-
creasing divergence. Figure 5a replicates the analysis in
Maillet et al. [33] using both Mash and COMMET to
cluster Global Ocean Survey (GOS) data [35]. On this
dataset, Mash is over tenfold faster than COMMET and
correctly identifies clusters from the original GOS study.
This illustrates the incremental scalability of Mash
where the primary overhead is sketching, which occurs
only once per each sample. After sketching, computing
pairwise distances is near instantaneous. Thus, Mash
avoids the quadratic barrier usually associated with all-
pairs comparisons and scales well to many samples. For
example, COMMET would require 1 h to add a new
GOS sample to this analysis, compared to less than
1 min for Mash.
For a large-scale test, samples from the Human

Microbiome Project [36] (HMP) and Metagenomics of the
Human Intestinal Tract [37] (MetaHIT) were combined
to create a ~10 TB 888-sample dataset. Importantly, the
size of a Mash sketch is independent of the input size,
requiring only 70 MB to store the combined sketches
(s = 10,000, k = 21) for these datasets. Both assembled
and unassembled samples were analyzed, requiring 4.4
CPU h to process all assemblies and 279.6 CPU h to
process all read sets. We estimated that COMMET would
require at least 140,000 CPU h to process all read sets
(500 times slower than Mash), so it was not run on the full
dataset. The Mash assembly-based and read-based clus-
ters are remarkably similar, with all samples clearly

a) UCSC genome browser b) Mash
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Fig. 4 Primate trees from the UCSC genome browser and Mash. a A primate phylogenetic tree model from the UCSC genome browser, with
branch lengths derived from fourfold degenerate sites extracted from reference gene multiple alignments. b A comparable Mash-based tree
generated from whole genomes using a sketch size of s = 1000 and k-mer size of k = 21. Additional file 1: Figure S6 includes this Mash tree with
five additional mammals of increasing divergence
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grouped by body site (Fig. 5b). Additionally, Mash identi-
fied outlier samples that were independently excluded by
the HMP’s quality control process. When included in the
clustering, these samples were the only ones that failed to
cluster by body site (Additional file 1: Figure S7). However,
because the Mash distance is based on simple k-mer sets,
it may be more prone to batch effects from sequencing or
sample preparation methods. For example, Mash does not
cluster MetaHIT samples by health status, as previously
reported [37], and MetaHIT samples appear to preferen-
tially cluster with one another.

Conclusions
Mash enables the comparison and clustering of whole
genomes and metagenomes on a massive scale. Potential
applications include the rapid triage and clustering of
sequence data, for example, to quickly select the most
appropriate reference genome for read mapping or to
identify mis-tracked or low quality samples that fail to
cluster as expected. Strong correlation between the Mash

distance and sequence mutation rate enables approximate
phylogeny construction, which could be used to rapidly
determine outbreak clusters for thousands of genomes in
real time. Additionally, because the Mash distance is based
upon simple set intersections, it can be computed using
homomorphic encryption schemes [38], enabling privacy-
preserving genomic tests [39].
Future applications of Mash could include read

mapping and metagenomic sequence classification via
windowed sketches or a containment score to test for
the presence of one sequence within another [4]. How-
ever, both of these approaches would require additional
sketch overhead to achieve acceptable sensitivity. Im-
provements in database construction are also expected.
For example, rather than storing a single sketch per
sequence (or window), similar sketches could be merged
to further reduce space and improve search times.
Obvious strategies include choosing a representative
sketch per cluster or hierarchically merging sketches via a
Bloom tree [40]. Finally, both the sketch and dist functions

Table 3 Sequencing runs and assemblies searched against the Mash RefSeq database

Organism Tech Type NCBI accession Size (Mbp) Time (CPU s) LCA Best hit

E. coli
K12 MG1655

MiSeq Assembly (SPAdes) 4.6 2.45 Entero. E. coli
K12 MG1655

E. coli
K12 MG1655

PacBio Assembly GCA_000801205 4.6 2.66 Entero. E. coli
K12 MG1655

E. coli
DH1

ABI 3730 Reads (Trace Archive) 60 17.08 Entero. E. coli
DH1

E. coli
K12 MG1655

454 Reads SRR797242 233 57.12 Entero. E. coli
K12 MG1655

E. coli
K12 MG1655

Ion PGM Reads SRR515925 407 72.01 E. coli E. coli
K12 1655

E. coli
K12 MG1655

MiSeq Reads SRR1770413 387 72.01 Entero. E. coli
KLY

E. coli
K12 MT203

HiSeq Reads SRR490124 2155 369.86 E. coli E. coli
GCF_000833635

E. coli
K12 MG1655

PacBio Reads SRR1284073 397 77.96 E. coli E. coli XH140A
GCF_000226585

E. coli
K12 MG1655

MinION 1D ERR764952..55 248 55.52 Entero. E. coli
O113 H21

E. coli
K12 MG1655

MinION 2D ERR764952..55 134 27.82 E. coli E. coli
GCF_000953515

B. anthracis Ames MinION 1D + 2D SRR2671867 210 44.66 B. anthracis B. anthracis
str. Carbosap

B. cereus ATCC 10987 MinION 1D + 2D SRR2671868 266 76.85 B. cereus ATCC 10987 B. cereus
ATCC 10987

Zaire ebolavirus MinION 1D + 2D ERR1050070 8.7 2.06 Zaire ebolavirus Zaire ebolavirus
Mayinga

In all cases, Mash search required 21 MB of RAM for genome assemblies and 209 MB of RAM for sequencing runs (due to the additional Bloom filter overhead).
Organism: source strain. Tech: Sequencing technology ABI 3730, 454 GS FLX, Illumina MiSeq, Illumina HiSeq, Ion PGM, PacBio RSII, Oxford Nanopore MinION. Type:
Assembly, reads, 1D and 2D nanopore reads. NCBI accession: NCBI accession of the dataset or reads. The SPAdes [63] assembly was derived from the MiSeq reads.
Size: total dataset size in Mbp. LCA: lowest common ancestor classification based on the NCBI taxonomy and the resulting hits within a significance tolerance of
the best. In several cases, the LCA is at the family level (Enterobacteriaceae) due to significant Mash hits to both E. coli and S. sonnei species. This is a known
species naming conflict within the NCBI taxonomy, with some genomes sharing ANI >98 % between these species. Best hit: reports the smallest significant
distance reported
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are designed as online algorithms, enabling, for example,
dist to continually update a sketch from a streaming input.
The program could then be modified to terminate when
enough data have been collected to make a species identi-
fication at a predefined significance threshold. This func-
tionality is designed to support the analysis of real-time
data streams, as is expected from nanopore-based sequen-
cing sensors [24].

Methods
Mash sketch
To construct a MinHash sketch, Mash first determines
the set of constituent k-mers by sliding a window of
length k across the sequence. Mash supports arbitrary
alphabets (e.g. nucleotide or amino acid) and both
assembled and unassembled sequences. Without loss
of generality, here we will assume a nucleotide

Fig. 5 Metagenomic clustering of ocean and human metagenomes using Mash. a Comparison of Global Ocean Survey (GOS) clustering using
Mash (top left) and COMMET (top right) using raw Sanger sequencing data. Heat maps illustrate the pairwise similarity between samples, scaled
between 0 (white) and 100 (red) for comparison to COMMET. Sample groups are identified and colored using the same key as in Rusch et al. [35].
The Mash clustering identifies two large clusters of temperate and tropical water samples as well as subgroupings consistent with the original
GOS study. b Human metagenomic samples combined from the HMP and MetaHIT projects clustered by Mash from 888 sequencing runs
(bottom left) and 879 assemblies (bottom right). For both sequencing reads and assemblies, Mash successfully clusters samples by body site and
appropriately clusters MetaHIT and HMP stool samples together, even though these samples are from different projects with different protocols
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alphabet Σ = {A,C,G,T}. Depending on the alphabet
size and choice of k, each k-mer is hashed to either a 32-
bit or 64-bit value via a hash function, h. For nucleotide
sequence, Mash uses canonical k-mers by default to allow
strand-neutral comparisons. In this case, only the lexico-
graphically smaller of the forward and reverse comple-
ment representations of a k-mer is hashed. For a given
sketch size s, Mash returns the s smallest hashes output
by h over all k-mers in the sequence (Fig. 1). Typically
referred to as a “bottom-k sketch” for a sketch of size k,
we refer to these simply as “bottom sketches” to avoid
confusion with the k-mer size k. For a sketch size s and
genome size n, a bottom sketch can be efficiently com-
puted in O(n log s) time by maintaining a sorted list of size
s and updating the current sketch only when a new hash
is smaller than the current sketch maximum. Further, the
probability that the i-th hash of the genome will enter the
sketch is s/i, so the expected runtime of the algorithm is
O(n + s log s log n) [4], which becomes nearly linear when
n > > s.
As demonstrated by Fig. 3, a sketch comprising 400

32-bit hash values is sufficient to roughly group micro-
bial genomes by species. With these parameters, the
resulting sketch size equals 1.6 kB for each genome. For
large genomes, this represents an enormous lossy com-
pression (e.g. compared to the 750 MB needed to store a
3 Gbp genome using 2-bit encoding). However, the
probability of a given k-mer K appearing in a random
genome X of size n is:

P K∈Xð Þ ¼ 1− 1− Σj j−k
� �n

ð1Þ

Thus, for k = 16 the probability of observing a given
k-mer in a 3 Gbp genome is 0.50 and 25 % of k-mers are
expected to be shared between two random 3 Gbp ge-
nomes by chance alone. This will skew any k-mer based
distance and make distantly related genomes appear more
similar than reality. To avoid this phenomenon, it is suffi-
cient to choose a value of k that minimizes the probability
of observing a random k-mer. Given a known genome size
n and the desired probability q of observing a random
k-mer (e.g. 0.01), this can be computed as [41]:

k 0 ¼
l
log Σj j n 1−qð Þ=qð Þ

m
ð2Þ

which yields k = 14 and k = 19 for 5 Mbp and 3 Gbp ge-
nomes (q = 0.01), respectively. We have found the pa-
rameters k = 21 and s = 1000 give accurate estimates in
most cases (including metagenomes), so this is set as the
default and still requires just 8 kB per sketch. However,
for constructing the RefSeq database, k = 16 was chosen
so that each hash could fit in 32 bits, minimizing the
database size at the expense of reduced specificity for
larger genomes. The small k also improves sensitivity,

which helps when comparing noisy data like single-
molecule sequencing (Additional file 1: Figures S2 and S3).
Lastly, for sketching raw sequencing reads, Mash

provides both a two-stage MinHash and Bloom filter
strategy to remove erroneous k-mers. These approaches
assume that redundancy in the data (e.g. depth of cover-
age >5) will result in true k-mers appearing multiple
times in the input, while false k-mers will appear only a
few times. Given a coverage threshold c, Mash can op-
tionally ignore such low-abundance k-mers with counts
less than c. By default, the coverage threshold is set to
one and all k-mers are considered for the sketch. In-
creasing this threshold enables the two-stage MinHash
filter strategy, which is based on tracking both the k-mer
hashes in the current sketch and a secondary set of can-
didate hashes. At any time, the current sketch contains
the s smallest hashes of all k-mers that have been ob-
served at least c times and the candidate set contains
hashes that are smaller than the largest value in the
sketch (sketch max), but have been observed less than c
times. When processing new k-mers, those with a hash
greater than the sketch max are immediately discarded,
as usual. However, if a new hash is smaller than the
current sketch max, it is checked against the candidate
set. If absent, it is added to this set. If present with a
count less than c – 1, its counter is incremented. If
present with a count of c – 1 or greater, it is removed
from the candidate set and added to the sketch. At this
point, the sketch max has changed and the candidate set
can be pruned to contain only values less than the new
sketch maximum. The result of this online method is
equivalent to running the MinHash algorithm on only
those k-mers that occur c or more times in the input.
However, in the worst case, if all k-mers in the input
occur less than the coverage threshold c, no hashes
would escape the candidate set and memory use would
increase with each new k-mer processed.
Alternatively, a Bloom filter can be used to probabilis-

tically exclude single-copy k-mers using a fixed amount
of memory. In this approach, a Bloom filter is main-
tained instead of a candidate list and new hashes are
inserted into the sketch only if they are less than sketch
max and found in the Bloom filter. If a new hash would
have otherwise been inserted in the sketch but was not
found in the Bloom filter, it is inserted into the Bloom
filter so that subsequent appearances of the hash will
pass. This effectively excludes many single-copy k-mers
from the sketch, but does not guarantee that all will be
filtered. With this approach, filtering k-mers with a copy
number greater than one would also be possible using a
counting Bloom filter, but this has not been imple-
mented since the exact method typically outperforms
the Bloom method in practice, both in terms of accuracy
and memory usage.
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Mash distance
A MinHash sketch of size s = 1 is equivalent to the
subsequent “minimizer” concept of Roberts et al. [42],
which has been used in genome assembly [43], k-mer
counting [44], and metagenomics [45]. Importantly, the
more general MinHash concept permits an approxi-

mation of the Jaccard index J A;Bð Þ ¼ A∩Bj j
A∪Bj j between two

k-mer sets A and B. Mash follows Broder’s original for-
mulation and merge-sorts two bottom sketches S(A) and
S(B) to estimate the Jaccard index [4]. The merge is
terminated after s unique hashes have been processed
(or both sketches exhausted), and the Jaccard estimate is
computed as j ¼ x

s′ for x shared hashes found after pro-
cessing s’ hashes. Because the sketches are stored in
sorted order, this requires only O(s) time and effectively
computes:

J A;Bð Þ ¼ A∩Bj j
A∪Bj j≈

S A∪Bð Þ∩S Að Þ∩S Bð Þj j
S A∪Bð Þj j ð3Þ

which is an unbiased estimate of the true Jaccard index,
as illustrated in Fig. 1. Conveniently, the error bound of

the Jaccard estimate ε ¼ O 1ffiffi
s

p
� �

relies only on the sketch

size and is independent of genome size [46]. Specific
confidence bounds are given below and in Additional file
1: Figure S1. Note, however, that the relative error can
grow quite large for very small Jaccard values (i.e. diver-
gent genomes). In these cases, a larger sketch size or
smaller k is needed to compensate. For flexibility, Mash
can also compare sketches of different size, but such
comparisons are constrained by the smaller of the two
sketches s < u and only the s smallest values are
considered.
The Jaccard index is a useful measure of global se-

quence similarity because it correlates with ANI, a com-
mon measure of global sequence similarity. However,
like the MUM index [19], J is sensitive to genome size
and simultaneously captures both point mutations and
gene content differences. For distance-based applica-
tions, the Jaccard index can be converted to the Jaccard
distance Jδ(A, B) = 1 − J(A, B), which is related to the
q-gram distance but without occurrence counts [47]. This
can be a useful metric for clustering, but is non-linear in
terms of the sequence mutation rate. In contrast, the
Mash distance D seeks to directly estimate a mutation rate
under a simple Poisson process of random site mutation.
As noted by Fan et al. [22], given the probability d of a
single substitution, the expected number of mutations in a
k-mer is λ = kd. Thus, under a Poisson model (assuming
unique k-mers and random, independent mutation), the
probability that no mutation will occur in a given k-mer is
e−kd, with an expected value equal to the fraction of con-
served k-mers w to the total number of k-mers t in the

genome, w
t . Solving e�kd ¼ w

t gives d ¼ − 1
k ln

w
t . To ac-

count for two genomes of different sizes, Fan et al. [22] set
t to the smaller of the two genome’s k-mer counts, thereby
measuring containment of the k-mer set. In contrast,
Mash sets t to the average genome size n, thereby penaliz-
ing for genome size differences and measuring resem-
blance (e.g. to avoid a distance of zero between a phage
and a genome containing that phage). Finally, because the
Jaccard estimate j can be framed in terms of the average
genome size j ¼ w

2n−w, the fraction of shared k-mers can be

framed in terms of the Jaccard index w
n ¼ 2j

1þj , yielding the

Mash distance:

D ¼ −
1
k
ln

2j
1þ j

ð4Þ

Equation 4 carries many assumptions and does not
attempt to model more complex evolutionary processes,
but closely approximates the divergence of real genomes
(Fig. 2). With appropriate choices of s and k, it can be
used as a replacement for costly ANI computations.
Table 1 and Additional file 1: Figure S2 give error
bounds on the Mash distance for various sketch sizes
and Additional file 1: Figure S3 illustrates the relation-
ship between the Jaccard index, Mash distance, k-mer
size, and genome size.

Mash P value
In the case of distantly related genomes it can be diffi-
cult to judge the significance of a given Jaccard index or
Mash distance. As illustrated by Eq. 1, for small k and
large n there can be a high probability of a random k-
mer appearing by chance. How many k-mers then are
expected to match between the sketches of two unre-
lated genomes? This depends on the sketch size and the
probability of a random k-mer appearing in the genome,
where the expected Jaccard index r between two random
genomes X and Y is given by:

r ¼ P K∈Xð ÞP K∈Yð Þ
P K∈Xð Þ þ P K∈Yð Þ−P K∈Xð ÞP K∈Yð Þ ð5Þ

From Eq. 1, the probability of a random k-mer de-
pends both on the size of k, which is known, and total
number of k-mers in the genome, which can be esti-
mated from the sketch [48]. For the sketch size s, max-
imum hash value in the sketch v, and hash bits b, the
number of distinct k-mers in the genome is estimated as
n = 2bs/v. For the population size m of all distinct k-mers
in X and Y and the number of shared k-mers w, where:

m ¼ X∪Yj j ¼ Xj j þ Yj j−w ð6Þ
the probability p of observing x or more matches
between the sketches of these two genomes can be
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computed using the hypergeometric cumulative distribu-
tion function. For the sketch size s, shared size w, and
population size m:

p x; s;w;mð Þ ¼ 1−
Xx−1
i¼0

w
i

� �
m−w
s−i

� �

m
s

� � ð7Þ

However, because m is typically very large and the
sketch size is relatively much smaller, it is more practical
to approximate the hypergeometric distribution with the
binomial distribution where the expected value of r ¼ w

m

can be computed using Eq. 5:

p x; s; rð Þ ¼ 1−
Xx−1
i¼0

s
i

� �
ri 1−rð Þs−i ð8Þ

Mash uses Eq. 8 to compute the P value of observing
a given Mash distance (or less) under the null hypothesis
that both genomes are random collections of k-mers.
This equation does not account for compositional
characteristics like GC bias, but it is useful in practice
for ruling out clearly insignificant results (especially for
small values of k and j). Interestingly, past work suggests
that a random model of k-mer occurrence is not entirely
unreasonable [41]. Note, this P value only describes the
significance of a single comparison and multiple testing
must be considered when searching against a large
database.

RefSeq clustering
By default, Mash uses 32-bit hashes for k-mers where
|Σ|k ≤ 232 and 64-bit hashes for |Σ|k ≤ 264. Thus, to
minimize the resulting size of the all-RefSeq sketches,
k = 16 was chosen along with a sketch size s = 400. While
not ideal for large genomes (due to the small k) or highly
divergent genomes (due to the small sketch), these param-
eters are well suited for determining species-level relation-
ships between the microbial genomes that currently
constitute the majority of RefSeq. For similar genomes
(e.g. ANI >95 %), sketches of a few hundred hashes are
sufficient for basic clustering. As ANI drops further, the
Jaccard index rapidly becomes very small and larger
sketches are required for accurate estimates. Confidence
bounds for the Jaccard estimate can be computed using
the inverse cumulative distribution function for the hyper-
geometric or binomial distributions (Additional file 1:
Figure S1). For example, with a sketch size of 400, two ge-
nomes with a true Jaccard index of 0.1 (x = 40) are very
likely to have a Jaccard estimate between 0.075 and 0.125
(P >0.9, binomial density for 30 ≤ x ≤ 50). For k = 16, this
corresponds to a Mash distance between 0.12 and 0.09.

RefSeq Complete release 70 was downloaded from
NCBI FTP (ftp://ftp.ncbi.nlm.nih.gov). Using FASTA and
Genbank records, replicons and contigs were grouped
by organism using a combination of two-letter accession
prefix, taxonomy ID, BioProject, BioSample, assembly
ID, plasmid ID, and organism name fields to ensure dis-
tinct genomes were not combined. In rare cases this
strategy resulted in over-separation due to database mis-
labeling. Plasmids and organelles were grouped with
their corresponding nuclear genomes when available;
otherwise they were kept as separate entries. Sequences
assigned to each resulting “organism” group were com-
bined into multi-FASTA files and chunked for easy
parallelization. Each chunk was sketched with:
mash sketch -s 400 -k 16 -f -o chunk *.fasta
This required 26.1 CPU h on a heterogeneous cluster

of AMD processors. (Note: option -f is not required in
Mash v1.1.) The resulting, chunked sketch files were
combined with the Mash paste function to create a
single “refseq.msh” file containing all sketches. Each
chunked sketch file was then compared against the com-
bined sketch file, again in parallel, using:
mash dist -t refseq.msh chunk.msh
This required 6.9 CPU h to create pairwise distance

tables for all chunks. The resulting chunk tables were
concatenated and formatted to create a PHYLIP format-
ted distance table.
For the ANI comparison, a subset of 500 Escherichia

genomes was selected to present a range of distances yet
bound the runtime of the comparatively expensive ANI
computation. ANI was computed using the MUMmer
v3.23 “dnadiff” program and extracting the 1-to-1
“AvgIdentity” field from the resulting report files [49].
The corresponding Mash distances were taken from the
all-vs-all distance table as described above.
For the primate phylogeny, the FASTA files were

sketched separately, in parallel, taking an average time of
8.9 min each and a maximum time of 11 min (Intel
Xeon E5-4620 2.2 GHz processor and solid-state drive).
The sketches were combined with Mash paste and the
combined sketch given to dist. These operations took in-
significant amounts of time, and table output from dist
was given to PHYLIP v3.695 [50] neighbor to produce
the phylogeny. Accessions for all genomes used are given
in Additional file 1: Table S1. The UCSC tree was down-
loaded from [51].

RefSeq search
Each dataset listed in Table 3 was compared against the
full RefSeq Mash database using the following command
for assemblies:
mash dist refseq.msh seq.fasta

and the following command for raw reads:
mash dist -u refseq.msh seq.fasta
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which enabled the Bloom filter to remove erroneous,
single-copy k-mers. (Note: option -u was replaced by -b
in Mash v1.1.) Hits were sorted by distance and all hits
within one order of magnitude of the most significant
hit (P ≤10–10) were used to compute the lowest common
ancestor using an NCBI taxonomy tree. The RefSeq gen-
ome with the smallest significant distance, with ties
broken by P value, was also reported.

Metagenomic clustering
The Global Ocean Survey (GOS) dataset [35] was down-
loaded from the iMicrobe FTP site (ftp://ftp.imicrobe.us/
projects/26). The full dataset was split into 44 samples
corresponding to Table 1 in Rusch et al. [35]. This is the
dataset used for benchmarking in the Compareads paper
[33] and that analysis was replicated using both Mash
and COMMET [34], the successor to Compareads.
COMMET v24/07/2014 was run with default parameters
(t = 2, m = all, k = 33) as:
python Commet.py read_sets.txt

where “read_sets.txt” points to the gzipped FASTQ files.
This required 34 CPU h (2069 CPU min) and 4 GB of
RAM. As suggested by COMMET’s author, samples
were also truncated to contain the same number of
reads to improve runtime (50,980 reads per sample,
Nicolas Maillet, personal communication). On this re-
duced dataset COMMET required 10 CPU h (598 CPU
min). The heatmaps were generated in R using the
quartile coloring of COMMET [34] (Additional file 1:
Supplementary Note 2). Additional file 1: Figure S8
shows the original heatmap generated by COMMET on
this dataset. Mash was run as:
mash sketch -u -g 3500 -k 21 -s 10000 -o

gos *.fa
This required 0.6 CPU h (37 CPU min) and 19.6 GB

of RAM with Bloom filtering or 8 MB without. (Note:
options -u and -g were replaced by -b in Mash v1.1.)
The resulting combined sketch file totaled just 3.4 MB
in size, compared to the 20 GB FASTA input. Mash
distances were computed for all pairs of samples as:
mash dist -t gos.msh gos.msh

which required less than 1 CPU s to complete.
All available HMP and MetaHIT samples were down-

loaded: HMP reads [52], HMP assemblies [53], MetaHIT
reads (ENA accession ERA000116), and MetaHIT as-
semblies [54]. This totaled 764 sequencing runs (9.3 TB)
and 755 assemblies (60 GB) for HMP and 124 sequen-
cing runs (1.1 TB) and 124 assemblies (10 GB) for
MetaHIT. Mash was run in parallel with the same pa-
rameters used for the GOS datasets and the resulting
sketches merged with Mash paste. Sketching the 764
HMP sequencing runs required 259.5 CPU h (average
0.34, max 2.01) and the 755 assemblies required 3.7 CPU
h (average 0.005). Sketching the 124 MetaHIT sequencing

runs required 20 CPU h (average 0.16, max 0.62), and the
124 assemblies required 0.64 CPU h (average 0.005).
COMMET was tested on three read sets (SAMN00038294,
SAMN00146305, and SAMN00037421), which were
smaller than the average HMP sample size and required an
average of 655 CPU s per pairwise comparison. Thus, it
was estimated to compare all 8882 pairs of HMP and
MetaHIT samples would require at least 143,471 CPU h.
Mash distances were computed for all pairs of samples as
before for GOS. This required 3.3 CPU min for both
sequencing runs and assemblies. HMP samples that did
not pass HMP QC requirements [36] were removed from
Fig. 5b, but Additional file 1: Figure S7 shows all HMP
assemblies clustered, with several samples that did not pass
HMP quality controls included. These samples are the only
ones that fail to group by body site. Thus, Mash can also
act as an alternate QC method to identify mis-tracked or
low-quality samples.

Mash engineering
Mash builds upon the following open-source software
packages: kseq [55] for FASTA parsing, Cap’n Proto for
serialized output [56], MurmurHash3 for k-mer hashing
[57], GNU Scientific Library [58] (GSL) for P value
computation, and the Open Bloom Filter Library [59].
All Mash code is licensed with a 3-clause BSD license. If
needed, Mash can also be built using the Boost library
[60] to avoid the GSL (GPLv3) license requirements.
Due to Cap’n Proto requirements, a C++11 compatible
compiler is required to build from source, but precom-
piled binaries are distributed for convenience.

Additional file

Additional file 1: Figure S1. Absolute and relative error bounds for
Mash Jaccard estimates given various sketch sizes. Figure S2. Error
bounds for Mash distance estimate using k = 16 and k = 21 and various
sketch sizes. Figure S3. Effect of k-mer and genome size on the Mash
distance. Figure S4. Eukaryotic components of the RefSeq clustering,
colored by taxonomic order. Figure S5. Plasmid and organelle components
of the RefSeq clustering, colored by taxonomic species. Figure S6. Mash
tree from Fig. 4 supplemented with five additional mammals. Figure S7.
Mash clustering of all HMP and MetaHit sample assemblies. Figure S8. Raw
COMMET output for the GOS dataset. Supplementary Note 1.
Supporting data. Supplementary Note 2. Metagenomic heatmap R code.
(PDF 8062 kb)
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